
Risk-Averse Trust Region Optimization for Reward-Volatility Reduction

Lorenzo Bisi1,2∗† , Luca Sabbioni1,2† , Edoardo Vittori1,3† , Matteo Papini1 and Marcello Restelli1
1Politecnico di Milano

2ISI Foundation
3Banca IMI

{lorenzo.bisi, luca.sabbioni, edoardo.vittori, matteo.papini, marcello.restelli}@polimi.it,

Abstract
The use of reinforcement learning in algorithmic
trading is of growing interest, since it offers the op-
portunity of making profit through the development
of autonomous artificial traders, that do not depend
on hard-coded rules. In such a framework, keeping
uncertainty under control is as important as max-
imizing expected returns. Risk aversion has been
addressed in reinforcement learning through mea-
sures related to the distribution of returns. How-
ever, in trading it is essential to keep under con-
trol the risk of portfolio positions in the interme-
diate steps. In this paper, we define a novel mea-
sure of risk, which we call reward volatility, con-
sisting of the variance of the rewards under the
state-occupancy measure. This new risk measure
is shown to bound the return variance so that re-
ducing the former also constrains the latter. We de-
rive a policy gradient theorem with a new objec-
tive function that exploits the mean-volatility rela-
tionship. Furthermore, we adapt TRPO, the well-
known policy gradient algorithm with monotonic
improvement guarantees, in a risk-averse manner.
Finally, we test the proposed approach in two fi-
nancial environments using real market data.

1 Introduction
Reinforcement Learning (RL) [Sutton and Barto, 1998] meth-
ods have a quite important recent history in financial trading,
starting with [Moody and Saffell, 2001] and followed by sev-
eral others such as [Shen et al., 2014]. However, even if inter-
esting from a theoretical point of view, these approaches are
still not mature for real applications, due to scalability or slow
convergence issues. Recently, policy search [Deisenroth et
al., 2013] algorithms, such as TRPO [Schulman et al., 2015]
and PPO [Schulman et al., 2017], have achieved great results
[OpenAI, 2018 accessed May 2020; Heess et al., 2017] in
terms of efficiently maximizing the expected value of the cu-
mulative discounted rewards (referred to as expected return).
Nonetheless, while proving very effective when the objective
∗Contact author
†Equal contribution

is the sole maximization of the return (even in the case of
partially observable, non-Markovian environments), they are
not ideal in the trading framework where keeping a low risk
is mandatory. The focus of this research is to develop a RL
algorithm capable of balancing risk and return, while taking
advantage of the improved performance of current state-of-
the-art algorithms.
Risk-aversion in reinforcement learning has been taken into
account with many different approaches [García and Fernán-
dez, 2015]: employing a utility function for the return [Shen
et al., 2014], changing the objective function, or adding a
constraint [Di Castro et al., 2012]. A number of modified ob-
jectives have been studied, for example the minimization of
variance of the returns (referred to as return variance through-
out the paper), in a mean-variance [Tamar and Mannor, 2013;
Prashanth and Ghavamzadeh, 2014b] or Sharpe ratio [Moody
and Saffell, 2001] fashion. Another example is a family of
well-behaved risk measures, which includes CVaR, called co-
herent risk measures [Tamar et al., 2017]. Nevertheless, all
these approaches consider only the minimization of the long-
term risk, while in financial trading interim results are also
fundamental, and keeping a low-varying intermediate P&L
(Profit and Loss) becomes crucial. This paper formally de-
fines and analyzes for the first time, to the best of our knowl-
edge, the variance of the reward at each time step w.r.t. state
visitation probabilities. We call this quantity reward volatil-
ity. Intuitively, the return variance measures the variation of
cumulated rewards among trajectories, while reward volatil-
ity is concerned with the variation of single-step rewards
among visited states. We derive a Bellman equation for the
reward-volatility that is exploited to obtain a policy gradient
theorem for this novel objective. In addition, we also show
that this new measure upper bounds the return variance (al-
beit for a normalization term). This is an interesting outcome,
indicating that it is possible to use the analytic results we de-
rived for the reward volatility to keep under control the re-
turn variance. Reward volatility is used to define a new risk-
averse performance objective, called mean-volatility, which
is a trade-off between the maximization of the expected re-
turn and the minimization of short-term risk. This trade-off
can be customized in order to meet the specific needs of each
individual trader, by tuning the risk aversion parameter. Opti-
mizing the mean-volatility objective allows to limit the inher-
ent risk due to the stochastic nature of the environment. How-
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ever, the imperfect knowledge of the model parameters, and
the consequent imprecise optimization process, is another rel-
evant source of risk, known as model risk. This is especially
important when the optimization is performed on-line, as may
happen for an autonomous, adaptive trading system. To avoid
any kind of performance oscillation, the intermediate solu-
tions implemented by the learning algorithm must guaran-
tee continuing improvement. The TRPO algorithm [Schul-
man et al., 2015] provides this kind of guarantees (at least
in its ideal formulation) for the risk-neutral objective, based
on the conservative bounds proven in [Kakade and Langford,
2002]. Thanks to the linearity of the corresponding Bellman
equation, we can show that the same bound still holds under
the mean-volatility formulation. Hence, we derive the Trust
Region Volatility Optimization (TRVO) algorithm, a TRPO-
style algorithm for the new mean-volatility objective.

This paper is organized as follows: after some background
on MDPs and on policy gradients (Section 2), the volatility
measure is introduced in Section 3 and compared to the re-
turn variance. The Policy Gradient Theorem for the mean-
volatility objective is provided in Section 4. In Section 4.1,
we introduce an estimator for the gradient which is based on
sample trajectories obtained from direct interaction with the
environment. In Section 5, the monotonic improvement guar-
antees are presented and discussed, and the TRVO algorithm
is introduced. Finally, in Section 7, we test our algorithms on
two financial environments, where the agents must learn to
trade on real assets using historical data.

2 Preliminaries

A discrete-time Markov Decision Process (MDP) is defined
as a tuple 〈S,A,P,R, γ, µ〉, where S is the (continuous)
state space, A the (continuous) action space, P(·|s, a) is a
Markovian transition model that assigns to each state-action
pair (s, a) the probability of reaching the next state s′,R is a
bounded reward function, i.e. sups∈S,a∈A |R(s, a)| ≤ Rmax,
γ ∈ [0, 1) is the discount factor, and µ is the initial state dis-
tribution. The policy of an agent is characterized by π(·|s),
which assigns to each state s the density distribution over the
action space A.
We consider infinite-horizon problems in which future re-
wards are exponentially discounted with γ. Following a
trajectory τ := (s0, a0, s1, a1, s2, a2, ...), let the returns
be defined as the discounted cumulative reward: Gτ =∑∞
t=0 γ

tR(st, at). For each state s and action a, the action-
value function is defined as:

Qπ(s, a) := E
st+1∼P(·|st,at)
at+1∼π(·|st+1)

[ ∞∑
t=0

γtR(st, at)|s0 = s, a0 = a

]
,

(1)
which can be recursively defined by the following Bellman
equation:

Qπ(s, a) = R(s, a) + γ E
s′∼P(·|s,a)
a′∼π(·|s′)

[
Qπ(s′, a′)

]
.

For each state s, we define the state-value function of the sta-
tionary policy π(·|s) as:

Vπ(s) := E
at∼π(·|st)

st+1∼P(·|st,at)

[ ∞∑
t=0

γtR(st, at)|s0 = s

]
(2)

It is useful to introduce the (discounted) state-occupancy
measure induced by π:

dµ,π(s) := (1− γ)

∫
S

µ(s0)
∞∑
t=0

γtpπ(s0
t−→ s) ds0,

where pπ(s0
t−→ s) is the probability of reaching state s in t

steps from s0 following policy π. The objective is the normal-
ized1 expected return: Jπ . It is defined below using two dis-
tinct formulations, one based on transition probabilities and
the other on the state occupancy dµ,π:

Jπ := (1− γ) E
s0∼µ

at∼π(·|st)
st+1∼P(·|st,at)

[ ∞∑
t=0

γtR(st, at)

]

= E
s∼dµ,π
a∼π(·|s)

[R(s, a)] .

For the rest of the paper, we consider parametric policies,
where the policy πθ is parametrized by a vector θ ∈ Θ ⊆
Rm.2

3 Risk Measures
This section introduces the concept of reward volatility, com-
paring it with the more common return variance. The latter,
denoted with σ2

π , is defined as:

σ2
π := E

s0∼µ
at∼πθ(·|st)

st+1∼P(·|st,at)

( ∞∑
t=0

γtR(st, at)−
Jπ

1− γ

)2
 .

(3)
In our case, it is useful to define reward volatility ν2

π in terms
of the distribution dµ,π . As it is not possible to define the re-
turn variance in the same way, we also rewrite reward volatil-
ity as an expected sum over trajectories:3

ν2
π := E

s∼dµ,π
a∼πθ(·|s)

[
(R(s, a)− Jπ)

2
]

(4)

= (1− γ) E
s0∼µ

at∼πθ(·|st)
st+1∼P(·|st,at)

[ ∞∑
t=0

γt (R(st, at)− Jπ)
2

]
.

(5)

1In our notation, the expected return (as commonly defined in the
RL literature) is Jπ

/
(1− γ).

2For the sake of brevity, when a variable depends on the policy
πθ , in subscripts only π is shown, omitting the dependency on θ.

3In finance, the term “volatility” refers to a generic measure of
variation, often defined as a standard deviation. In this paper, volatil-
ity is defined as a variance.
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Once we have set a mean-variance parameter λ, the perfor-
mance or objective function related to the policy π can be
defined as:

ηπ := Jπ − λν2
π, (6)

called mean-volatility hereafter, where λ ≥ 0 allows to trade-
off expected return maximization with risk minimization.
Similarly, the mean-variance objective is Jπ

/
(1− γ)− λσ2

π .
An important result on the relationship between the two vari-
ance measures is the following:

Lemma 1 Consider the return variance σ2
π defined in Equa-

tion (3) and the reward volatility ν2
π defined in Equation (5).

The following inequality holds:

σ2
π ≤

ν2
π

(1− γ)2
,

Sketch of Proof. Expanding the square term in Equation (3),
σ2
π = Eτ

[
(
∑
t γ

tRt)
2
]
− J2

π/(1 − γ)2. As a consequence
of the Cauchy-Schwarz inequality, Eτ

[
(
∑
t γ

tRt)
2
]
≤

Eτ
[
(
∑
t γ

tR2
t )
]
/(1 − γ). Rearranging the terms the thesis

is proven.

It is important to notice that the factor (1 − γ)2 comes from
the fact that the return variance is not normalized, unlike
the reward volatility (intuitively, volatility measures risk on
a shorter time scale). What is lost in the reward volatility
compared to the return variance are the inter-temporal corre-
lations between the rewards. However, Lemma 1 shows that
the minimization of the reward volatility yields a low return
variance. The opposite is clearly not true: as counterexample
it is possible to consider a stock price, having the same value
at the beginning and at the end of the investment period, but
making complex movements in-between.

4 Risk-Averse Policy Gradient
In this section, we derive a policy gradient theorem for the
reward volatility ν2

π and propose an unbiased gradient esti-
mator. This will allow us to solve the optimization problem
maxθ∈Θ ηπθ via stochastic gradient ascent. We introduce a
volatility equivalent of the action-value function Qπ (Equa-
tion (1)) called action-volatility function, which is the volatil-
ity observed by starting from state s, taking action a, and fol-
lowing policy π thereafter:

Xπ(s, a) := E
st+1∼P (·|st,at)
at+1∼π(·|st+1)

[ ∞∑
t=0

γt(R(st, at)− Jπ)2|s, a

]
,

(7)
Like the Q function, this can be written recursively by means
of a Bellman equation:

Xπ(s, a) =
(
R(s, a)−Jπ

)2
+γ E

s′∼P (·|s,a)
a′∼πθ(·|s′)

[
Xπ(s′, a′)

]
. (8)

We define also the state-volatility function Wπ as the ex-
pected value of Xπ under the policy πθ , i.e. the equivalent of
the V function (Equation 2) for volatility. The linearity of this
Bellman equation allows an alternative interpretation of the

mean-volatility objective. In fact, by applying a reward trans-
formation Rλπ(st, at) = R(st, at)− λ(R(st, at)− Jπ)2, it is
possible to formulate the problem as a standard RL problem,
where X and W functions are reduced to Q and V . Nonethe-
less,Rλπ is a non-stationary policy-dependent reward, hence it
is not compliant with the usual MDP framework and it is not
possible to apply standard value-based algorithms to it. In
general, even policy gradient approaches cannot be used with
this kind of rewards. However, with the obtained Bellman
equation we can derive a Policy Gradient Theorem (PGT) that
holds for both ν2

π and the transformed reward case, as done in
[Sutton et al., 2000] for the expected return:

Theorem 2 (Reward Volatility PGT) Using the definitions
of action-volatility and state-volatility function, the variance
term ν2

π can be rewritten as:

ν2
π = (1− γ)

∫
S
µ(s)Wπ(s)ds. (9)

Moreover, for a given policy πθ, θ ∈ Θ:

∇ν2
π = E

s∼dµ,π
a∼πθ(·|s)

[
∇ log πθ(a|s)Xπ(s, a)

]
.

Sketch of Proof. Thanks to Equation (8), the computation of
the gradients of Xπ and Wπ w.r.t. θ is easily obtained:

∇Xπ(s, a) = −2
(
R(s, a)− Jπ

)
∇Jπ + γ E

s′∼P

[
∇Wπ(s′)

]
,

∇Wπ(s) = ∇
∫
A
πθ(a|s)Xπ(s, a) da

=

∫
A

[∇πθ(a|s)Xπ(s, a)−2πθ(a|s)(R(s, a)− Jπ)∇Jπ] da

+ γ

∫
S

(∫
A
P (s′|s, a)πθ(a|s) da

)
∇Wπ(s′) ds′.

By unrolling the recursive definition, we obtain the first right
hand term in expectation under the dµ,π and π. Its second
component vanishes, allowing us to obtain the thesis from
∇ν2

π = (1− γ)
∫
S µ(s)∇Wπ(s) ds.

The term that becomes null in the proof corresponds to the
policy-dependent component of the reward. Therefore, we
also proved that, in this special case, the PGT still applies af-
ter the transformation. With a simple extension it is possible
to obtain the policy gradient theorem for the mean-volatility
objective defined in equation (6). The action value and state
value functions are obtained by combining the action value
functions of the expected return (1) and of the volatility (7):

Qλπ(s, a) := Qπ(s, a)− λXπ(s, a)

V λπ (s) = Vπ(s)− λWπ(s).

The policy gradient theorem thus states:

∇ηπ = E
s∼dµ,π
a∼πθ(·|s)

[
∇ log πθ(a|s)Qλπ(s, a)

]
. (10)
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4.1 Estimating the Risk-Averse Policy Gradient
To design a practical actor-only policy gradient algorithm, the
action-value function Qπ needs to be estimated as in [Sut-
ton and Barto, 1998; Peters and Schaal, 2008]. Sim-
ilarly, we need an estimator for Xπ . In this approxi-
mate framework, we consider to collect N finite trajectories
si0, a

i
0, ..., s

i
T−1, a

i
T−1, i = 0, . . . , N − 1 per each policy up-

date. An unbiased estimator of Jπ can be defined as:

Ĵ =
1− γ

1− γT
1

N

N−1∑
i=0

T−1∑
t=0

γtRit, (11)

where rewards are denoted as Rit = R(sit, a
i
t). This can be

used to compute an estimator for the action-volatility func-
tion:
Lemma 3 Let X̂ be the following estimator for the action-
volatility function:

X̂ =
1− γ

1− γT
1

N

N−1∑
i=0

T−1∑
t=0

γt
[
(Rit − Ĵ1)(Rit − Ĵ2)

]
, (12)

where Ĵ1 and Ĵ2, defined as in Equation (11), are taken from
two different sets of trajectoriesD1 andD2, and a third set of
samples D3 is used for the rewardsRit in Equation (12).
Then, X̂ is unbiased.

Note that, in order to obtain an unbiased estimator for X ,
a triple sampling procedure is needed. This may be very re-
strictive. However, by adopting single sampling instead, the
bias introduced is equivalent to the variance of Ĵ , so the es-
timator is still consistent. This result can be used to build a
consistent estimator for the policy gradient∇ηπ , as an exten-
sion of the PGT estimator [Sutton et al., 2000]:

∇̂Nηπ =
1

N

N−1∑
i=0

T−1∑
t=0

γt
( T−1∑
t′=t

γt
′−t[Rit′ − λ 1− γ

1− γT

(Rit′ − Ĵ)2
])
∇ log πθ(ait|sit).

(13)

5 Trust Region Volatility Optimization
In this section, we go beyond the standard policy gradient
theorem and show it is possible to guarantee a monotonic im-
provement of the mean-volatility performance measure (6) at
each policy update. Safe (in the sense of non-pejorative) up-
dates are of fundamental importance when learning online
on a real system; but also helps speeding up offline train-
ing by dynamically choosing the optimal step size. While
the mean-volatility objective ensures a risk-averse behavior
of the policy, the safe update ensures a risk-averse update
of the parameters of the policy. Thus, if we care about the
agent’s performance within the learning process, we must
consider the importance of the step sizes at each update of
the parameters. Adapting the approach in [Schulman et al.,
2015] to our mean-volatility objective, we show it is possi-
ble to obtain a learning rate that guarantees that the perfor-
mance of the updated policy is bounded with respect to the
previous policy. The safe update is based on the advantage

function, defined as the difference between the action value
and state value function. From the linearity of the new Bell-
man equations, we can extend the definitions of advantage
Aπ(s, a) = Qπ(s, a)−Vπ(s) to their λ-versions, to obtain the
mean-volatility advantage function Aλπ(s, a). Furthermore,
with the mean-volatility objective all the theoretical results
leading to the TRPO algorithm hold. In particular, Theorem
4 is a λ-extension of Lemma 6.1 in [Kakade and Langford,
2002], with an interesting extra additive term4:
Theorem 4 (Performance Difference) The performance
difference between two policies π and π̃ is equal to the sum
of the expected mean-volatility advantage and a bonus term,
related to the squared expected advantage:

ηπ̃ − ηπ =

∫
S
dµ,π̃(s)

∫
A
π̃(a|s)Aλπ(s, a) da ds

+λ(1− γ)2(Jπ̃ − Jπ)2.

(14)

Neglecting the last term, the bound becomes the same that
could be obtained considering the transformed reward Rλπ .
In practice, it corresponds to considering the volatility of
the previous policy rather than approximating the next one.
This is, in general, the main issue that arises with the reward
transformation: it works well for the on-policy case, but it
cannot be handled with the same ease in the off-policy one.
The aforementioned term adds a gain related to the square of
the difference in the expected returns of the policies; there-
fore there is always a bonus w.r.t the reward transformation
approach if the expected return of the second policy is ei-
ther higher or lower than the first one. Following the ap-
proach proposed in [Schulman et al., 2015], it is then pos-
sible to adopt an approximation Lλπ(π̃) of the surrogate func-
tion, which provides monotonic improvement guarantees by
considering the KL divergence between the policies:
Theorem 5 (Safe Improvement Bound) Consider the fol-
lowing approximation of ηπ̃ , replacing the state-occupancy
density of the old policy dµ,π:

Lλπ(π̃) := ηπ +

∫
S
dµ,π(s)

∫
A
π̃(a|s)Aλπ(s, a) da ds; (15)

Let

α = Dmax
KL (π, π̃) = max

s
DKL(π(·|s), π̃(·|s))

ελ = max
s
| E
a∼π̃

[
Aλπ(s, a)

]
|, ε = max

s
| E
a∼π̃

[
Aπ(s, a)

]
|

Then, the performance of π̃ can be bounded as follows:5

ηπ̃ ≥ Lλπ(π̃)− 2γελ
1− γ

α+ λ(1− γ)2M2, (16)

where

M := max(0, Aπ̃π −
2εγ

1− γ
α,−Aπ̃π −

γ

1− γ
αRmax),

Aπ̃π :=

∫
S
dµ,π(s)

∫
A
π̃(a|s)Aπ(s, a) da ds.

4Different definitions result in different normalization terms.
5Comparing this bound to the results shown in the original paper,

the denominator term is not squared due to return normalization.
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Algorithm 1 Trust Region Volatility Optimization (TRVO)

Input: initial policy parameter θ0, batch size N , number
of iterations K, discount factor γ.
for k = 0, . . . ,K − 1 do

Collect N trajectories with θk to obtain dataset DN
Compute estimates Ĵ as in Equation (11)
Estimate advantage values Aλθk(s, a)
Solve the constrained optimization problem

θk+1 = arg max
θ∈Θ

[
Lλk(θ)− 2εγ

1− γ
Dmax
KL (πθk , πθ)

]
where ε = max

s
max
a
|Aλθk(s, a)|

Lλk(θ) = ηθk + E
s∼dµ,πk
a∼πθ(·|s)

Aλθk(s, a)

end for

Finally, we can devise the first risk-averse trust-region op-
timization algorithm (to the best of our knowledge), which
is called TRVO (Trust Region Volatility Optimization) and is
outlined in Algorithm 1. The reader should notice that this
extension is highly dependent on the the risk-measure cho-
sen, and could not be easily applied to the other ones, which
lack a linear Bellman equation [Sobel, 1982].

6 Related Works
Two streams of RL literature have been merged together in
this paper: risk-averse objective functions and safe policy up-
dates. As stated in [Di Castro et al., 2012; García and Fernán-
dez, 2015], these two themes are related as they both reduce
risk. The first is the reduction of inherent risk, generated by
the stochastic nature of the environment, while the second
is the reduction of model risk, related to the imperfect knowl-
edge of model parameters. Several ways of minimizing inher-
ent risk have been considered in RL literature. In particular,
the mean-variance objective Jπ−βσ2

π has been relevant espe-
cially in the financial field [Steinbach, 2001]. One of the ear-
liest contributions for this specific objective is the risk-averse
Bellman equation for the return variance defined in [Sobel,
1982]. This equation does not satisfy the monotonicity prop-
erty of dynamic programming, preventing the use of value-
based approaches. However, it is still possible, with actor
only [Di Castro et al., 2012] and actor-critic [Prashanth and
Ghavamzadeh, 2014a] algorithms, to locally optimize this
measure. In [Moody and Saffell, 2001] the authors maxi-
mize a reward-related risk measure, the Sharpe ratio, defined
as the ratio between the mean and standard deviation of the
reward. However their algorithm assumes no dependence be-
tween states and actions, which is true in simple trading en-
vironments (as the ones we consider in the experiments), but
not in more realistic ones. Coherent risk measures represent
another interesting alternative with favorable mathematical
properties, for which it is possible to derive an actor-only pol-
icy gradient algorithm [Tamar et al., 2015]. CVaR is the most
frequently employed in finance and has been separately tack-
led with a distributional approach [Morimura et al., 2010],
and an actor-critic algorithm [Chow et al., 2017].

Even if for some of these measures a Bellman Equation can
be derived, unfortunately, such recursive relationships are al-
ways non-linear. This prevents one to extend safe guarantees
(Theorem 5) and the properties of the TRPO algorithm to the
mentioned risk measures. Finally, it is possible to introduce
risk averse objectives in value function based algorithms such
as Q-learning [Tamar et al., 2016], but it is limited to discrete
action spaces.
The second literature stream is dedicated to the safe update,
which, until now, has only been defined for the standard risk-
neutral objective function. The seminal paper for this setting
is [Kakade and Langford, 2002], which proposes a conserva-
tive policy iteration algorithm with monotonic improvement
guarantees for mixtures of greedy policies. This approach is
generalized to stationary and stochastic policies in [Pirotta et
al., 2013b; Schulman et al., 2015]. Building on the former,
monotonically improving policy gradient algorithms are de-
vised for Gaussian, Lipschitz, and more recently, smoothing
policies [Pirotta et al., 2013a; Papini et al., 2017; Pirotta et
al., 2015; Papini et al., 2019]. On the other hand, [Schulman
et al., 2015] propose TRPO, a general policy gradient algo-
rithm inspired by the monotonically-improving policy itera-
tion strategy, which enjoyed great empirical success in recent
years, especially in combination with deep policies.

7 Experiments
In this section, we show an empirical analysis of the per-
formance of TRVO (Algorithm 1) applied in two financial
trading tasks: the first on an equity index, the S&P 500, and
the second on spot Foreign Exchange (FX): USD/EUR and
USD/JPY . The first baseline we compare to is a mean-
variance policy gradient approach presented in [Di Castro
et al., 2012] (indicated as MV-PG), which we adjusted to
take into account discounting.The second one is Direct Re-
inforcement Learning (DRL) [Moody and Saffell, 2001]. Fi-
nally we consider a risk averse transformation of the re-
wards, R̃t := (1− exp{−cRt})/c, in the original TRPO al-
gorithm (indicated as TRPO-exp). It represents a first-order
approximation of mean-volatility, but it is sound only for
small values of the risk-aversion coefficient, since negative
rewards can generate strong instabilities of the learning pro-
cess. As shown below, TRVO is capable of obtaining a com-
plete Pareto frontier on both these environments and it con-
verges sooner than the baselines.

7.1 S&P 500 Trading
This first environment considers the daily prices of the S&P
index from the 1980s, until 2019. The possible actions are
at ∈ {−1, 0, 1}, where -1 indicates a short, 1 a long, and
0 a flat position (thus, short selling is possible). We assume
that at each time-step we go long or short of the same uni-
tary amount, thus the profits (and losses) are not re-invested,
which means that the final gain is the sum of all the rewards.
The value of the asset at time t is pt, and the reward is equal
to Rt = at(pt− pt−1)− f |at− at−1|, where the first term is
the profit or loss given by the action at, and the second term
represents the transaction costs, where f is the proportional-
ity constant, set to 7 · 10−5. The policy we used is a neural
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Figure 1: (a) and (b): expected return, reward volatility, return variance in the S&P 500 environment with: TRVO, TRPO-exp, MV-PG, DRL;
(c) and (d): expected return, mean volatility in the FX environment in training (c) testing (d). Performance is on 3 months and not normalized.

network with two hidden layers and 64 neurons per hidden
layer. The state consists of the last 10 days of percentage
price changes, the previous portfolio position and the fraction
of episode left (50 days long).

Results. The relevant plots for this environment are the
first two in Figure 1, obtained on in-sample data. Plot (a)
shows the Pareto frontier obtained with the four different
algorithms by changing the risk aversion coefficient in the
mean-volatility space, plot (b) in the mean-variance space. It
is evident that the frontier generated by TRVO dominates the
naive approach (TRPO-exp). Also, TRPO-exp becomes un-
stable for high levels of the risk-aversion parameter c, so it
is not possible to find the value for which the risk aversion
is maximal, which is why there are no points in the bottom
left. The same figure includes also the results obtained with
MV-PG, trained with the same number of iterations as TRVO
(and TRPO-exp).In the mean-volatility space (Figure 1.a), the
frontier generated by TRVO is clearly dominating. Instead, in
the mean-variance space (Figure 1.b), the frontiers generated
by MV-PG and TRVO are overlapping, but while the points
generated by TRVO span a wide part of the space, those gen-
erated by MV-PG are concentrated in the lower-leftmost part
of the graph even though they are trained with different risk
aversions. This is due in part to the fact that MV-PG has not
reached convergence even though it was given the same num-
ber of steps as TRVO, and reflects the faster convergence of
TRPO w.r.t. GPOMDP. For DRL it is not possible to set the
risk-aversion, hence it consists in a single point, which is on
the Mean-Variance frontier, but it is instead dominated w.r.t.
the Mean-Volatility criterion.

7.2 FX Trading

In the second experiment, actions and rewards are defined in
the same way as before, but two different assets are consid-
ered: the FX ratesUSD/EUR andUSD/JPY . The dataset
has a much higher frequency (one datapoint per minute),
hence also the agent can act every minute for a total of 1170
steps per episode (a trading day). The possible actions corre-
spond to the position to keep for each asset, and the fee for
each transaction is f = 10−6. The training has been per-
formed for a total of 5 · 107 steps on the 2017 dataset, while
the testing was applied on 2018.

Results. The results for this environment can be found in
the last two plots in Figure 1. We can see that TRPO-exp ob-
tains the same results as TRVO for small risk-aversion coeffi-
cients, both in training (c) and in testing (d). However, higher
coefficients lead to instability in the exponential reward, that
is gradually dominated by TRVO. It is interesting to notice
that the settings having small or null risk-aversion coefficients
(top right of the plots) are on the edge of the frontier in train-
ing, but are dominated in testing by more risk-averse policies.
In this environment, MV-PG converges to a sub-optimal pol-
icy with null expected return, while DRL does not improve.
Hence, they are not shown in the figures.

8 Conclusions
We proposed a novel methodology for risk-averse RL, ex-
ploiting, for the first time, a safe improvement bound. This
was possible thanks to the definition of a risk measure called
reward volatility that captures the variability of the rewards
between steps. Optimizing this measure allows to obtain
smoother trajectories that avoid shocks, which is a fundamen-
tal feature in a trading setting, and has never been considered
by other risk measures so far. We showed interesting theo-
retical properties of reward-volatility: it bounds the variance
of the returns and, differently from other risk measures, it
has a linear Bellman equation. A policy gradient theorem
for the mean-volatility objective was derived and, thanks to
the aforementioned linearity, we obtained TRVO, a trust re-
gion algorithm that exploits a monotonic improvement bound
of our objective. The proposed algorithm was tested on two
financial trading environments where it was shown to outper-
form the baselines, obtaining better Pareto frontiers in shorter
time. This work lays the foundation for extensions to both
off-policy and online settings. To conclude, the developed
framework is the first to take into account two kinds of safety,
as it is capable of keeping risk under control while maintain-
ing the same training and convergence properties as state-of-
the-art risk-neutral approaches.
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